Using Free Energy Perturbation Calculations to Model the Mutation of $LeuT_{Aa}$ and mDAT Residues that Bind TCAs

Using Free Energy Perturbation Calculations to Model the Mutation of LeuT_{Aa} Residues that Bind TCAs

Using Free Energy Perturbation Calculations

Free Energy Perturbation Calculations?

Free Energy Perturbation (FEP) Calculations

- Can be used to predict manifold biological phenomena
 - рКа
 - change in binding energy due to mutagenesis
 - solvation energy
 - protein-ligand binding

Usually the most accurate way to calculate any of the above

The Zwanzig Equation

$$\Delta G(A \to B) = G_B - G_A = -k_B T \ln \left\langle \exp\left(-\frac{E_B - E_A}{k_B T}\right) \right\rangle_A$$

Zwanzig, R.W. 1954. J. Chem. Phys. 22; 8: 1420-1426.

Implementation in NAMD 2.7b1

$$\Delta G(i \rightarrow i + \Delta i) = -k_B T \sum_{i=1}^{N} \ln \left\langle \exp \left(-\frac{H_B(x, p_x; \lambda_{i+\Delta\lambda}) - H_A(x, p_x; \lambda_i)}{k_B T} \right) \right\rangle_{i}$$

Parameterizing a Novel Molecule

- Determines how a force field (e.g., CHARMM) will treat the molecule
 - Atomic Partial Charges
 - Bond lengths and angles
 - Spring Constants for bonds and angles

K_b(b-b₀)²

Energy function for rotation around dihedral bonds

- Atomic Partial Charges were assigned via the OPLS-AA force field
- Remaining parameters were set via (educated?) guesses

LeuT and TCA Binding

The crystal structure of LeuT_{Aa} was reported in 2005.

LeuT_{Aa} was also crystallized bound to several tricyclic antidepressants (TCAs)

Yamashita, A. et al. **2005**. *Nature*. 437: 215-223. Zhou, Z. et al. **2007**. *Science*. 317: 1390-1393. Singh, S.K. et al. **2007**. *Nature*. 448: 952-956.

Varying Steps/Window

Mutated Residue: LeuT Asp 404 \rightarrow Ala

Steps/Window	ΔG _{D404A} (kcal/mol)
100,000	114.4
200,000	115.2
400,000	119.7

Calculations performed in vacuum

The Mutation

Aspartate 404 mutated to alanine with clomipramine bound

Zhou, Z. et al. 2007. Science. 317: 1390-1393.

Modeling Ligand Binding with FEP Calculations

Modeling Ligand Binding with FEP Calculations

Initial TCA Binding Results

FEP Calculations of Aqueous $\Delta\Delta G_{binding}$ Results						
CA (Complex)	ΔG _{TCA→~} (kcal/mol)	ΔG _{LeuT:TCA→LeuT:~} (kcal/mol)	ΔG _{bind} (kcal/mol)	ΔG _{exp} (kcal/mol)		
clomipramine	2.9	15	-12	-4.9 ± 0.09		
imipramine	35	12	23	-3.7 ± 0.08		

• $\Delta\Delta G_{\text{binding}} = \text{RTln}(\text{IC}_{50})$ for non- or uncompetitive binding

Experimental values from Singh, S.K. et al. **2007**. *Nature*. 448: 952-956. (supplementary material)

Clomipramine $\rightarrow \sim$

Desipramine $\rightarrow \sim$

Potential Sources of Error

Inadequate sampling near $\lambda = 0.5$

- More trials run with better sampling (still waiting for results from supercomputer)
- OPLS charges incompatible with force field
 - Performed ab initio calculations to compare to OPLS charges

FEP calculations incorrectly implemented

- Ran several variations of FEP calculations using decane (with OPLS charges and guessed parameters)
- Prepared a set of 14 calculations with CHARMMparameterized molecules (will run when supercomputer wakes up)

TCA $\rightarrow \sim$ with Better Sampling

 $CXX \rightarrow \sim$

IXX --> ~

100K steps / window, 39 windows Electrostatics decoupled $\lambda = 0 - 0.5$, van der Waals decoupled $\lambda = 0.5 - 1.0$

Comparison of TCA $\rightarrow \sim$ Calculations

	25 Windows (kcal/mol)	39 Windows (kcal/mol)	
clomipramine	2.86	-0.0865	
imipramine	35.0	0.184	
desipramine	21.6	21.9	

Alternative Charges

		Minimized Structure		XRD Structure	
	OPLS-AA	MSK	ChelpG	MSK	ChelpG
Total Charge	1.00	0.992	1.001	0.998	1.00
Abs. Dev / N		0.090	0.080	0.112	0.088
	M	lost significa	nt deviation	S	
Atom			Charges		
N2	-0.260	0.003	0.005	0.103	-0.058
C14	0.123	0.267	0.336	0.126	0.214
C17	0.190	0.319	0.124	-0.216	0.075
C18	0.130	-0.359	-0.217	-0.387	-0.262
C19	0.130	-0.327	-0.152	-0.438	-0.194

Calculated in Gaussian 03 at the HF/6-31G(d) level of theory; the minimized structure contained no imaginary frequencies.

Most Significant Deviations

Determining $\Delta\Delta G_{solv}$

Results for FEP Calculations on Decane

					Αqι	leous	
			Decouple		ON	0	FF
		Fixed?		Yes	No	Yes	No
	Boundary		Results (kcal/mol)	0.20	-0.058	-0.45	-4.9
Vacuum	Periodic	Yes	-0.27	-0.47	-0.21	0.18	4.3
		No	-2.6	-2.8	-2.5	-2.1	2.3
	None	No	-2.3	-2.5	-2.2	-1.9	2.6

Experimental decane ΔG_{solv} = 3.16 kcal/mol

Using Parameterized Molecules to Test FEP Methods

Testing FEP Method with Parameterized CHARMM Test Set

Compound	ΔG _{solv} (kcal/mol)		Compound	ΔG _{solv} (kcal/mol)	
compound	Calc. Exp. ⁵	Calc.	Exp.⁵		
acetic acid	-12	-6.69	methanol	-4.0	-5.10
benzene	-0.82	-0.86	methylamine	-2.7	-4.55
butane	1.8	2.07	N-methylacetamide	-12	-10.00
ethanol	-6.0	-5.00	pentane	1.1	2.32
ethane	2.2	1.83	phenol	-7.8	-6.61
ethanethiol	-0.98	-1.10	propane	2.2	1.96
methanethiol	-0.35	-1.20	protene	0.80	1.32

Average Deviation from experiment: 1.2 kcal/mol

Exp. Values: Rizzo, R.C. et al. 2006. J. Chem. Theor. Comp. 2: 128-139.

Future Work

Continue to refine TCA CHARMM parameters in a more systematic manner

- Use new parameters to perform calculations that can be compared to experimental results (e.g., pKa prediction)
- Investigate alternative methods for implementation of FEP calculations into NAMD, including those that can separate electrostatic decoupling from van der Waals
- Use proper TCA parameters to perform FEP calculations that simulate the mutation of an inhibitor-binding residue and compare these results with mutagenesis studies. This data can be used to refine the computational model of TCA binding to both LeuT_{Aa} and mammalian sodium symporters (e.g., DAT).

Acknowledgements

- Dr. Jeffry Madura, Duquesne University
- Kalyan Immadisetty, Ph.D. candidate, Duquesne University
- The BBSI administrators
- All the cool BBSI students, and Victor Rusu
- NIH/NSF